
NVT (Network Virtual Terminal) 
description 

 
English version  

 
Czech version  

Communication with the TCP/IP device over the Ethernet network can be extended to more functions using NVT (Network Virtual Terminal) 
commands. It can be used according to the RFC2217 standard to change baudrate on remote Virtual Serial Port for example. The simple NVT 

control commands are included in the data stream with the character "FF" used as the command prefix. If the "FF" character occurs within the 
normal data stream, it is simply doubled. 

You can find detailed NVT and a complete TELNET description in the last section of this article, we shall begin with a detailed manual of used 
commands and examples. 

  

Article content : 

- Description of the NVT commands implemented in HW devices 
- The basic functions supported by NVT  
- Supported RFC2217 functions 
- Supported General Purpose Input Output (GPIO) functions 
- Examples of correct NVT usage. 
 
- The Telnet Protocol 
  - The Network Virtual Terminal 
  - Commands 
  - Telnet Negotiable Options 
  - Telnet control functions 
 
  - Related Datasheets & Links 
  - Related products  

   

Description of the NVT commands implemented in HW devices 

The aim in our applications is to stay compatible with existing standards, but there is a need to 
implement several parts of different standards, because some things are not necessary for our 
applications and some implementation parts are very useful and necessary. Basically we use 
some extensions from RCF2217 standard (controlling the serial asynchronous channel 
properties) and some more extensions (controlling I/O pins and other peripherals).  

You can download the whole RCF 2217 standard documentation here- rfc2217.txt 

The size of implemented extensions is getting larger every day, so the following functions are 
just a base. The full list of implemented commands is available upon request. There may be 
some commands specific to certain devices.  



  

The basic functions supported by NVT  

The basic functions of the TELNET protocol are described in the RFC854 (rfc0854.txt) 
standard or in a shorter version within "The Telnet Protocol" chapter of this manual.  

Brief NVT description : 

 NVT comands are inserted to the data stream via TCP/IP before sending to the TCP/IP 
connection. 

 Every NVT command is prefixed by character "0xFF".  
 There are some basic commands with 2 byte interpretation only (EOF, ABORT, BRK, 

AYT, NOP, EC), and others with defined start (<IAC><SB> = 0xFF 0xFA) and 
defined end (<IAC><SE> = 0xFF 0xF0) commands.  

 The TCP/IP device separates NVT commands and processes them without delay, 
while the data stream stores to the output stack. Hence NVT commands are 
asynchronous and independent on the data stream! You can't simply send "A", change 
parity and then send "B" to the TCP/IP connection. This doesn't result in character "A" 
having a different parity than character "B".  

 The NVT commands can't be found in the serial port data, if the device is Serial / 
TCP/IP converter. The firmware of the TCP/IP device filter all NVT from the data 
stream. Because of this, you have to switch on/off the NVT support in the SETUP of 
the Converter device.  
If you are sending character "0xFF" (255), the PC will just double it, because in NVT 
"0xFFFF" means send character "0xFF" to the output. 

 NVT uses a negotiation process. It's a way of testing if terminals on the opposite side 
use ECHO or not ar if there are specific terminals etc. We support easy negotiation 
with RFC2217 confirmation. 

It is good to know, there are basic commands (EOF, ABORT, BRK, AYT, NOP, EC...), 
which might be represented by double characters that we do not need to use in practical 
applications using the embedded device (Unless NOP and AYT). 

Dec HEX Shortcut Description 
240 F0 SE End of sub negotiation parameters 
241 F1 NOP No Operation 
246 F6 AYT Are You There 
250 FA SB Indicates that what follows is sub negotiation of the 

indicated option. 
255 FF IAC Data Byte 255 

   

 AYT is useful to request identification of the device and check ahead for NVT 
compatible devices.  

 NOP means NO OPERATION, but we can use it to "keep connection" when there is 
no data stream. You can send the command and over the TCP/IP layer confirmation, 
check there is still functionality and an opened TCP connection. 



 

 
  

Supported RFC2217 functions 

The RFC2217 is the standard defined in October 1997 by G. Clark from Cisco Systems, Inc. 
It proposes a protocol to allow greater use of modems attached to a network for outbound 
dialing purposes. In brief it describes how to control the remote asynchronous serial port 
connected over the TCP/IP network. It enables you to change remote serial port baudrate 
speeds, parity and other paramethers. You can download the whole RCF 2217 standard 
documentation here - rfc2217.txt  

We support: 

Com Port Control Client to Access Server constants 
CAS_SIGNATURE, 0 
CAS_SET_BAUDRATE, 1 
CAS_SET_DATASIZE, 2 
CAS_SET_PARITY, 3 
CAS_SET_STOPSIZE, 4 
CAS_SET_CONTROL, 5 
CAS_NOTIFY_LINESTATE, 6 
CAS_NOTIFY_MODEMSTATE, 7 
CAS_FLOWCONTROL_SUSPEND,8 
CAS_FLOWCONTROL_RESUME, 9 
CAS_SET_LINESTATE_MASK, 10 
CAS_SET_MODEMSTATE_MASK,11 
CAS_PURGE_DATA, 12 
CAS_OPT_GPIO, 50 
CAS_SET_GPIO, 51 

Com Port Control Access Server to Client constants 
ASC_SIGNATURE, 100 
ASC_SET_BAUDRATE, 101 
ASC_SET_DATASIZE, 102 
ASC_SET_PARITY, 103 
ASC_SET_STOPSIZE, 104 
ASC_SET_CONTROL, 105 



ASC_NOTIFY_LINESTATE, 106 
ASC_NOTIFY_MODEMSTATE, 107 
ASC_FLOWCONTROL_SUSPEND,108 
ASC_FLOWCONTROL_RESUME, 109 
ASC_SET_LINESTATE_MASK, 110 
ASC_SET_MODEMSTATE_MASK,111 
ASC_PURGE_DATA, 112 
ASC_OPT_GPIO, 150 
ASC_SET_GPIO, 151 

   

Supported General Purpose Input Output (GPIO) functions 

We extended the RFC2217 standard to incorporate some GPIO (General Purpose Input 
Output) functions listed below. It's not standardised, but we didn't find any standards for 
GPIO functions during the year 2001.  

  

COM-PORT-OPTION - 44 (2C hex) 

Behind the sequence IAC SB, there might also be the enlargement COM-PORT-OPTION 
command (the command is ended by the IAC SE sequence of course) in RFC2217 standard. 
We are only describing some of the sub-commands. The whole description is in the RFC2217 
standard. 

The values up to 100 dec are valid in the Client >> Server mode. 
The values higher than 100 dec are valid in Server >> Client mode 

Dec HEX Description 
0 00  CAS_SIGNATURE 
1 01  CAS_SET_BAUDRATE 
2 02  CAS_SET_DATASIZE 
3 03  CAS_SET_PARITY 
4 04  CAS_SET_STOPSIZE 
5 05  CAS_SET_CONTROL 
6 06  CAS_NOTIFY_LINESTATE 
7 07  CAS_NOTIFY_MODEMSTATE 
8 08  CAS_FLOWCONTROL_SUSPEND 
9 09  CAS_FLOWCONTROL_RESUME 
10 0A  CAS_SET_LINESTATE_MASK 
11 0B  CAS_SET_MODEMSTATE_MASK 
12 0C  CAS_PURGE_DATA 
50 32  CAS_OPT_GPIO 
51 33  CAS_SET_GPIO 
: :   

+100 +64  ASC_



150 96  ASC_OPT_GPIO 
151 97  ASC_SET_GPIO 

 
Supported NVT commands 

ASC_ is the device response to the CAS_ command. It means the PC will send a 
CAS_SET_PARITY command and the TCP/IP device will reply with the parity value 
confirmation ASC_SET_PARITY. 

   

 
  

COM-PORT-GPIO SUBOPTION - 50 and 51 (32 and 33 hex) 

For direct I/O pin control we use the double byte command GPIO-50 or 51 (which is behind 
the COM-PORT-OPTION 44 command) followed by the sub option sequence. 

Sub option 50 (32 hex) 
- 0 (00 hex) – request for input state reading - the answer contains the value of the input port 
(The CPU’s pins or input shift register)  
- 16 .. 23 (10 .. 17 hex) – set the output bit 0..7 as 1 
- 32 .. 39 (20 .. 27 hex) – set the output bit 0..7 as 0 
- 48 (30 hex) – request for output state reading - tha answer contains the value of the output 
port 

Sub option 51 (33 hex) 
- sets the sent XX value to the output port, see example. It sends the same answer back, 
because it reads it from the inner pseudoregister.  

We practically control the GPIO port by sending the "FF FA 2C 32 XX FF F0“ sequence 
with XX port value. (the XX value is sent to the output port). For example the 0x11 (0x11 = 
11 hex) value sets P1.1 to 1, other P1 pins stay unchanged.  

Sub option 52 (34 hex) 
Sends the outputs value, if there has been a change in any state, or if the device was 
powered on. This command does not expect any answer, therefore there is no value for 152 
(98 HEX) in the table (a single report is basically an unrequested answer). 

This command can be preceded with a "FF FA 2C 32 00 FF F0", sequence. This command 
is used to synchronize binary inputs and outputs of two devices connected to each other. 

If we receive the "FF FA 2C 34 XX FF F0" in the data flow, we know that an input port has 
been changed.  

Why two sequencies ? 
In the appropriate communication between two I/O controller devices, the first device sends 
the "FF FA 2C 32 00 FF F0" sequence only once, because the other I/O Controller responds 



with "FF FA 2C 97 XX FF F0" (where XX is its inputs state). From now on, both sides send 
only the "FF FA 2C 34 XX FF F0" if there has been an input state change. 

Note: To activate the function that informs about the input changes, you need to set the 
monitored input range with the "#T: Trigger AND mask"command.  

 To transmit all the inputs set: #T=255 
 To turn off inputs transmitting set #T=0 

 

 

  

How to use NVT correctly 

Almost all the NVT commands have a set number of characters. If the value is set in 4 Byte 
format and we would like to read the actual value from the device by the “0 setting”, we have 
to send this “0” as a 00 00 00 00 hex sequence.  

 

Setting up the output of the GPIO port 

The following command sets the output GPIO port to hex value AA (10101010 bin)  

<IAC><SB><COM_PORT_OPTION><CAS_SET_GPIO><byte to 
output)><IAC><SE> 
 FF   FA        2C              33            AA          FF 
  F0 
 
This sequence is the answer from the device : 
<IAC><SB><COM_PORT_OPTION><ACS_SET_GPIO><byte to 
output)><IAC><SE> 
 FF   FA        2C              97            AA          FF 
  F0 
You can see that the answer from the device contains +100 DEC (+64 HEX because 0x33 + 
0x64 = 0x97) value for the NVT command confirmation.  



  

Reading the GPIO inputs  

By sending the FF FA 2C 32 00 FF F0 sequence >> the embedded server responds with: FF 
FA 2C 96 XX FF F0 
- where XX is the actual value of the input pins.  

  

Reading the output value 

By sending the FF FA 2C 32 30 FF F0 sequence >> the embedded server responds with : FF 
FA 2C 97 XX FF F0 
- where XX is the actual value of the register, which is used to set the outputs.  
 
Note: The output value here is the output REGISTER value. This can be very useful if you 
have to combine bit and byte oriented commands.  

  

Clearing the P1.5 output pin (or D5 of the data output) 

By sending the FF FA 2C 32 25 FF F0 sequence >> the embedded server responds with : FF 
FA 2C 97 DF FF F0 
- where DF is the actual value of the output port (it also depends on the previous port state). 
The embedded server only changes one bit, but returns the whole port value. 

  

Reporting the input changes 

If you do not send ani request from your PC and the input state changes, you receive the "FF 
FA 2C 32 00 FF F0 " and the "FF FA 2C 34 XX FF F0" sequence 

Where the XX is the actual value of the binary input.  

The function works similar to the incoming data on the serial port. If your device works in the 
TCP Client/Server mode and has NVT enabled, then when you receive 1 byte from the serial 
port (or there is any binary input change), teh device tries to establish a TCP connection and 
send the data. When the TCP connection is established, only the actual inputs status is sent, 
not the whole history of changes. 

Note: To activate the function that informs about the input changes, you need to set the 
monitored input range with the "#T: Trigger AND mask"command.  

 To transmit all the inputs set: #T=255 
 To turn off inputs transmitting set #T=0 

How to change the RS-232 line baudrate speed 



You can check the actual Port speed by sending the 00 00 00 00 sequence. If you send any 
other value, the Port speed will be changed by the server. The dec value corresponds with the 
port speed in Bd.  

By sending the FF FA 2C 01 00 00 00 00 FF F0 sequence >> The server returns : FF FA 2C 
65 00 00 25 80 FF F0 
After the 00 00 25 80 HEX->DEC conversion, we can read the port speed directly, which is 
9600Bd.  

  

Keep Connection 

If data is not transferred, the server terminates the connection. To keep the connection active 
all the time, use the “K: Keep connection” command in the setup mode of the 
Embedded device.  
The connection is active for an unlimited time, because the NOP command sends (FF F1 
sequence) from the Embedded device side every 5seconds. The TCP connection will close if 
the TCP layer finds it can't deliver packets for too long a time.  

Note : Keep connection function works only if NVT support is switched on!  

   

How to solve the 9th bit problem? 

The “space mark” NVT feature has been implemented from version 2.3. This feature can be 
used for the 9th bit settings, which was commonly used by older applications during 90's.  

Note, the parity change is asynchronous, it is not buffered, but it is completed after the 
character is received. The synchronous functions are available as our proprietary solution by 
sending the 0xFE’P’ sequence, which reserves the parity. You have to enable the 
"Variable Parity" support in the SETUP. 

  

Are You There ? 

If you would like to check whether the device is available via the network, there is a special 
“Are you there” command in telnet application. Usually, the response from a standard Unix 
device is “Yes”. We have extended this response as follows: If you send the FF F6 sequence, 
our Embedded server will answer the response in the following format:  

<WEB51 HW 4.5 SW 2.3 SN 01A03B #01>  
 
Which means : 
<WEB51 HW XXX SW XXX SN 1035EE #0F *OvErr *ParErr *FlErr> 



There is the device name, HW version, firmware version and “S/N”, which is the last 3 Bytes 
of the MAC address. The sequence behind the * character is just for the status response and is 
not necessary.  

  

  

  

The Telnet Protocol 
The Telnet protocol is often thought of as simply providing a facility for remote logins to a 
computer via the Internet. This was its original purpose although it can be used for many other 
functions.  
It is best understood in the context of a user with a simple terminal using the local telnet 
program (known as the client program) to run a login session on a remote computer where his 
communication needs are handled by a telnet server program. It should be emphasised that the 
telnet server can pass on the data it has received from the client to many other types of 
process including a remote login server. It is described in the RFC854 standard, first 
published in 1983.  

  

The Network Virtual Terminal 

Communication is established using the TCP/IP protocols and communication is based on a 
set of facilities known as a Network Virtual Terminal (NVT). At the user or client end the 
telnet client program is responsible for mapping incoming NVT codes to the actual codes 
needed to operate the user's display device and is also responsible for mapping user generated 
keyboard sequences into NVT sequences.  

The NVT uses 7 bit codes for characters, the display device, referred to as a printer in the 
RFC, is only required to display the "standard" printing ASCII characters represented by 7 bit 
codes and to recognise and process certain control codes. The 7 bit characters are transmitted 
as 8 bit bytes with most significant bit set to zero. An end-of-line is transmitted as the 
character sequence CR (carriage return) followed by LF (line feed). If it is desired to transmit 
an actual carriage return this is transmitted as a carriage return followed by a NUL (all bits 
zero) character.  

NVT ASCII is used by many other Internet protocols.  
The following control codes are required to be understood by the Network Virtual Terminal.  

Name  code  Decimal 
Value  Function  

NULL  NUL  0  No operation  



Line 
Feed  LF  10  

Moves the printer to the next print 
line, keeping the same horizontal 
position.  

Carriage 
Return  CR  13  Moves the printer to the left margin 

of the current line.  

The following control codes are optional but should have the indicated effect on the display.  

Name  code Decimal 
Value  Function  

BELL  BEL 7  Produces an audible or visible signal 
(which does NOT move the print head.  

Back 
Space  BS  8  

Moves the print head one character 
position towards the left margin. [On a 
printing devices this mechanism was 
commonly used to form composite 
characters by printing two basic 
characters on top of each other.]  

Horizontal 
Tab  HT  9  

Moves the printer to the next horizontal 
tab stop. It remains unspecified how 
either party determines or establishes 
where such tab stops are located.  

Vertical 
Tab  VT  11  

Moves the printer to the next vertical 
tab stop. It remains unspecified how 
either party determines or establishes 
where such tab stops are located.  

Form Feed  FF  12  

Moves the printer to the top of the next 
page, keeping the same horizontal 
position. [On visual displays this 
commonly clears the screen and moves 
the cursor to the top left corner.]  

  

The NVT keyboard is specified as being capable of generating all 128 ASCII codes by using 
keys, key combinations or key sequences.  

 

Commands 

The telnet protocol also specifies various commands that control the method and various 
details of the interaction between the client and server. These commands are incorporated 
within the data stream. The commands are distinguished by the use of various characters with 
the most significant bit set. Commands are always introduced by a character with the decimal 
code 255 known as an Interpret as command (IAC) character. The complete set of special 
characters is  



   

Name  Decimal 
Code  Meaning  

SE  240  End of subnegotiation parameters.  
NOP  241  No operation  

DM  242  
Data mark. Indicates the position of a Synch 
event within the data stream. This should always 
be accompanied by a TCP urgent notification.  

BRK  243  Break. Indicates that the "break" or "attention" 
key was hit.  

IP  244  Suspend, interrupt or abort the process to which 
the NVT is connected.  

AO  245  
Abort output. Allows the current process to run 
to completion but do not send its output to the 
user.  

AYT  246  Are you there. Send back to the NVT some 
visible evidence that the AYT was received.  

EC  247  
Erase character. The receiver should delete the 
last preceding undeleted character from the data 
stream.  

EL  248  Erase line. Delete characters from the data stream 
back to but not including the previous CRLF.  

GA  249  Go ahead. Used, under certain circumstances, to 
tell the other end that it can transmit.  

SB  250  Subnegotiation of the indicated option follows.  

WILL  251  
Indicates the desire to begin performing, or 
confirmation that you are now performing, the 
indicated option.  

WONT 252  Indicates the refusal to perform, or continue 
performing, the indicated option.  

DO  253  
Indicates the request that the other party perform, 
or confirmation that you are expecting the other 
party to perform, the indicated option.  

DONT  254  

Indicates the demand that the other party stop 
performing, or confirmation that you are no 
longer expecting the other party to perform, the 
indicated option.  

IAC  255  Interpret as command  



 

There are a variety of options that can be negotiated between a telnet client and server using 
commands at any stage during the connection. They are described in detail in separate RFCs. 
The following are the most important.  

Decimal code  Name  RFC  
1  echo  857  
3  suppress go ahead  858  
5  status  859  
6  timing mark  860  
24  terminal type  1091  
31  window size  1073  
32  terminal speed  1079  
33  remote flow control  1372  
34  linemode  1184  
36  environment variables  1408  

Options are agreed by a process of negotiation which results in the client and server having a 
common view of various extra capabilities that affect the interchange and the operation of 
applications.  
Either end of a telnet dialogue can enable or disable an option either locally or remotely. The 
initiator sends a 3 byte command of the form  

IAC,<type of operation>,<option> 

The response is of the same form.  

Operation is one of  

Description Decimal 
Code  Action  



WILL  251  Sender wants to do something.  

DO  252  Sender wants the other end to do 
something.  

WONT  253  Sender doesn't want to do 
something.  

DONT  254  Sender doesn't want the other 
end to do anything.  

  

Associated with each of the these there are various possible responses  

Sender 
Sent  

Receiver 
Responds Implication  

WILL  DO  
The sender would like to use a 
certain facility if the receiver can 
handle it. Option is now in effect  

WILL  DONT  Receiver says it cannot support the 
option. Option is not in effect.  

DO  WILL  

The sender says it can handle traffic 
from the sender if the sender wishes 
to use a certain option. Option is now 
in effect.  

DO  WONT  Receiver says it cannot support the 
option. Option is not in effect.  

WONT  DONT  Option disabled. DONT is only valid 
response.  

DONT  WONT  Option disabled. WONT is only 
valid response.  

For example if the sender wants the other end to suppress go-ahead it would send the byte 
sequence  
255(IAC),251(WILL),3 
The final byte of the three byte sequence identifies the required action.  
For some of the negotiable options values need to be communicated once support of the 
option has been agreed. This is done using sub-option negotiation. Values are communicated 
via an exchange of value query commands and responses in the following form.  
IAC,SB,<option code number>,1,IAC,SE 
and  
IAC,SB,<option code>,0,<value>,IAC,SE 

For example if the client wishes to identify the terminal type to the server the following 
exchange might take place  
Client 255(IAC),251(WILL),24 
Server 255(IAC),253(DO),24 



Server 255(IAC),250(SB),24,1,255(IAC),240(SE) 
Client 255(IAC),250(SB),24,0,'V','T','2','2','0',255(IAC),240(SE) 

The first exchange establishes that the terminal type (option number 24) will be handled, the 
server then enquires of the client what value it wishes to associate with the terminal type. The 
sequence SB,24,1 implies sub-option negotiation for option type 24, value required (1). The 
IAC,SE sequence indicates the end of this request. The response IAC,SB,24,0,'V'... implies 
sub-option negotiation for option type 24, value supplied (0), the IAC,SE sequence indicates 
the end of the response (and the supplied value).  
The encoding of the value is specific to the option but a sequence of characters, as shown 
above, is common.  

  

Telnet Negotiable Options 

Many of those listed here are self-evident, but some call for more comments.  

 Suppress Go Ahead  
The original telnet implementation defaulted to "half duplex" operation. This means 
that data traffic could only go in one direction at a time and specific action is required 
to indicate the end of traffic in one direction and that traffic may now start in the other 
direction. [This similar to the use of "roger" and "over" by amateur and CB radio 
operators.] The specific action is the inclusion of a GA character in the data stream.  
Modern links normally allow bi-directional operation and the "suppress go ahead" 
option is enabled.  
   

 echo  
The echo option is enabled, usually by the server, to indicate that the server will echo 
every character it receives. A combination of "suppress go ahead" and "echo" is called 
'character at a time mode' meaning that each character is separately transmitted and 
echoed.  
There is an understanding known as kludge line mode which means that if either 
"suppress go ahead" or "echo" is enabled but not both then telnet operates in line at a 
time mode meaning that complete lines are assembled at each end and transmitted in 
one "go".  
   

 linemode  
This option replaces and supersedes the line mode kludge.  
   

 remote flow control  
This option controls where the special flow control effects of Ctrl-S/Ctrl-Q are 
implemented.  

 
  

Telnet control functions 



The telnet protocol includes a number of control functions. These are initiated in response to 
conditions detected by the client (usually certain special keys or key combinations) or server. 
The detected condition causes a special character to be incorporated in the data stream.  

 Interrupt Process  
This is used by the client to cause the suspension or termination of the server process. 
Typically the user types Ctrl-C on the keyboard. An IP (244) character is included in 
the data stream.  

 Abort Output  
This is used to suppress the transmission of remote process output. An AO (238) 
character is included in the data stream.  

 Are You There  
This is used to trigger a visible response from the other end to confirm the operation of 
the link and the remote process. An AYT (246) character is incorporated in the data 
stream.  

 Erase character  
Sent to the display to tell it to delete the immediately preceding character from the 
display. An EC (247) character is incorporated in the data stream.  

 Erase line  
Causes the deletion of the current line of input. An EL (248) character is incorporated 
in the data stream.  

 Data Mark  
Some control functions such as AO and IP require immediate action and this may 
cause difficulties if data is held in buffers awaiting input requests from a (possibly 
misbehaving) remote process. To overcome this problem a DM (242) character is sent 
in a TCP Urgent segment, this tells the receiver to examine the data stream for 
"interesting" characters such as IP, AO and AYT. This is known as the telnet synch 
mechanism.  

  

Related Datasheets & Links 

 Originally whole RCF 2217 standard documentation - rfc2217.txt 

 


